手持式光谱仪大致原理:

X射线荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量,达到定性定量分析的目的。


根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。X射线是一种波长较短的电磁辐射,通常是指能量范围在0.1~100 keV的光子。


X射线性质:

1、X射线吸收

当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。

2、X射线散射

除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。


##相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因为原子核的质量比电子大得多,原子核的振动可忽略不计,所以主要是原子中的电子跟着一起周期振动。由于带电粒子的振动,又产生新的电磁波,以球面波形式向四面八方射出,其波长和位相与入射X射线相同。又由于不同的电子都发射电磁波,就构成了一群可以相干的波源,这种现象叫做X射线相干散射。


##非相干散射:当X射线与原子中束缚力(结合能)较弱的电子或自由电子发生碰撞,电子被碰向一边,而X射线光子也偏离了一个角度。此时,X射线光子的一部分能量传递给电子,转化为电子的动能。X射线光子就失去一部分能量,因为E=hν=hc/λ,X射线光子碰撞后能量减小、频率变小、波长变大。由于碰撞后,各光子的散射方向不一样,各光子失去的能量也不一样,这样它们的波长各不相同,两个散射波的位相之间没有关系,因此不能形成干涉作用,故这种散射称为非相干散射。


3、X射线的衍射

相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。

其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体,测量衍射线的衍射角θ,用布拉格衍射公式计算出样品中发射出来的特征X射线的波长,从波长可以确认样品中所含的元素,这就是波长色散X射线荧光光谱元素分析(XRF)(本文摘至日立分析仪器微信公众号,仅用于技术交流,版权归作者所有,如有疑问请与我司联系)


我们的手持式光谱仪就是采用XRF荧光光谱仪进行检测,同时对检测样品进行的是无损检测,针对合金分析、矿石土壤、粉末、燃油等,适用范围广,操作简单,结果易见。


X射线荧光光谱仪中X射线的由来和性质分析

>

X射线荧光光谱仪中X射线的由来和性质分析

本网站由阿里云提供云计算及安全服务